Telescópios revelam a rápida rotação do buraco negro da Via Láctea, que distorce o espaço-tempo

A ilustração deste artista mostra um corte transversal de um buraco negro supermassivo e material circundante no centro da nossa galáxia. A esfera negra no centro representa o horizonte de eventos do buraco negro, o ponto sem retorno do qual nada, nem mesmo a luz, pode escapar. Ao olhar lateralmente para um buraco negro em rotação, como mostrado nesta ilustração, o espaço-tempo que o rodeia tem a forma de uma bola de futebol americana. O material amarelo-laranja em ambos os lados representa o gás girando em torno do buraco negro. Esta matéria inevitavelmente corre para o buraco negro e cruza o horizonte de eventos quando assume a forma esférica. Assim, a região dentro da forma da bola de futebol, mas fora do horizonte de eventos, é representada como uma cavidade. Os pontos azuis mostram jatos disparando dos pólos do buraco negro em rotação. Crédito da imagem: NASA/CXC/M.Weiss

  • Um novo estudo pode ajudar a resolver a questão de quão rapidamente via Lácteaenorme Buraco negro Rotaciona.
  • O buraco negro, conhecido como Sagitário A* (Sgr A*), tem uma massa cerca de 4 milhões de vezes a do Sol.
  • Usar NASAObservatório de raios-X Chandra da NSF e Very Large Array da NSF, este estudo descobriu que Sgr A* está girando muito rapidamente.
  • Esta alta rotação distorce o espaço-tempo em torno de Sagitário A*, de modo que parece ter a forma de uma bola de futebol americana.

A ilustração deste artista retrata os resultados de um novo estudo do buraco negro supermassivo no centro da nossa galáxia chamado Sagitário A* (abreviado Sgr A*). Esta descoberta descobriu que Sagitário A* gira tão rapidamente que distorce o espaço-tempo – isto é, o tempo e as três dimensões do espaço – de modo que pode parecer mais uma bola de futebol.

READ  Fóssil de dinossauro de 120 milhões de anos com seus últimos ossos ainda dentro revela que gostava de comer nossos ancestrais

Esses resultados foram obtidos usando o Observatório de Raios-X Chandra da NASA e o Karl J. Jansky Very Large Array (VLA) da NSF. Uma equipe de pesquisadores aplicou um novo método usado raio X E dados de rádio para determinar a rapidez com que Sgr A* está girando com base em como o material flui em direção e longe do buraco negro. Eles descobriram que Sagitário A* gira com uma velocidade angular de cerca de 60% do valor máximo possível e com um momento angular de cerca de 90% do valor máximo possível.

Os buracos negros têm duas propriedades básicas: a sua massa (quanto pesam) e a sua rotação (a rapidez com que giram). A determinação de qualquer um desses valores diz muito aos cientistas sobre qualquer buraco negro e como ele se comporta. No passado, os astrónomos fizeram várias outras estimativas da velocidade de rotação de Sagitário A* utilizando diferentes técnicas, com resultados que vão desde Sagitário A* sem rodar até rodar quase à velocidade máxima.

O novo estudo sugere que Sagitário A* está, de facto, a rodar muito rapidamente, comprimindo o espaço-tempo que o rodeia. A ilustração mostra uma seção transversal do Arco A* e o material orbitando-o no disco. A esfera negra no centro representa o chamado horizonte de eventos do buraco negro, o ponto sem retorno do qual nada, nem mesmo a luz, pode escapar.

Ao olhar lateralmente para um buraco negro em rotação, como mostrado nesta ilustração, o espaço-tempo que o rodeia tem a forma de uma bola de futebol. Quanto maior a velocidade de rotação, mais plana fica a bola de futebol.

O material amarelo-laranja em ambos os lados representa o gás girando em torno de Sagitário A*. Esta matéria inevitavelmente corre para o buraco negro e cruza o horizonte de eventos quando assume a forma esférica. Assim, a região dentro da forma da bola de futebol, mas fora do horizonte de eventos, é representada como uma cavidade. Os pontos azuis mostram jatos disparando dos pólos do buraco negro em rotação. Se olharmos para o buraco negro de cima, ao longo do bocal do jato, descobrimos que o espaço-tempo é circular.

Imagem de raios X do Chandra de Sagitário A*

Imagem de raios X do Chandra de Sagitário A* e área circundante. Crédito: NASA/CXC/Universidade. De Wisconsin/Y.Bai, et al.

A rotação de um buraco negro pode servir como uma importante fonte de energia. Buracos negros supermassivos produzem fluxos paralelos semelhantes a jatos quando sua energia de spin é extraída, o que requer pelo menos alguma matéria nas proximidades do buraco negro. Devido ao combustível limitado em torno de Sagitário A*, este buraco negro tem estado relativamente silencioso nos últimos milhares de anos, com jatos relativamente fracos. No entanto, este trabalho mostra que isso pode mudar se a quantidade de material próximo a Sgr A* aumentar.

READ  Descoberta de dinossauros sugere por que o T-rex tinha armas pequenas

Para determinar o spin* do buraco negro, os autores usaram uma técnica baseada em experimentos conhecida como “método de saída”, que detalha a relação entre o spin e a massa do buraco negro, as propriedades da matéria perto do buraco negro e as propriedades do buraco negro. fluxo de saída. O fluxo paralelo para fora produz ondas de rádio, enquanto o disco de gás que circunda o buraco negro é responsável pela emissão de raios-X. Usando este método, os investigadores combinaram dados do Chandra e do VLA com estimativas independentes da massa do buraco negro obtidas por outros telescópios para restringir a rotação do buraco negro.

O artigo que descreve essas descobertas, liderado por Ruth Daly (Universidade Estadual da Pensilvânia), foi publicado na edição de janeiro de 2024 da revista Avisos mensais da Royal Astronomical Society.

Referência: “Novos valores de rotação do buraco negro para Sagitário A* obtidos usando o método de saída” por Ruth A Daly, Megan Donahue, Christopher P O'Dea, Biny Sebastian, Daryl Haggard e Anan Lu, 21 de outubro de 2023, Avisos mensais da Royal Astronomical Society.
doi: 10.1093/mnras/stad3228

Outros autores são Penny Sebastian (Universidade de Manitoba, Canadá), Megan Donahue (Universidade Estadual de Michigan), Christopher O'Dea (Universidade de Manitoba), Darrell Haggard (Universidade McGill) e Anan Lu (Universidade McGill).

O Marshall Space Flight Center da NASA gerencia o programa Chandra. O Centro de Raios-X Chandra do Observatório Astrofísico Smithsonian controla as operações científicas de Cambridge, Massachusetts, e as operações de voo de Burlington, Massachusetts.

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *